2020

Taiwan Experience Education Program

 National Taiwan Normal UniversityApplication website : https://www.studyintaiwan.org/teep/

Department of Electrical Engineering

Learning from Demonstration Robotic Systems

A vision-based learning from demonstration (LfD) robotic system is currently under investigation to develop a mimic robot with mobile capability, where object detection and action recognition are used to understand the behaviors of the demonstrator, so that the robot can reproduce the tasks demonstrated by the human.

Techniques used in study

Participating students can have the opportunity to build knowledge in deep learning and robotics, including object detection, action recognition, motion planning, grasping strategies, robot navigation.

Learning from demonstration Robotic system

Chen-Chien Hsu, Professor

Computational Intelligence and Robotics
(CIR) Lab
jhsu@ntnu.edu.tw

Background:

PhD, Griffith University, Australia

Funding:

Ministry of Science and Technology
National Taiwan Normal University

Publications

1. Chiang-Heng Chien, Chen-Chien Hsu*, Wei-Yen Wang, and Hsin-Han Chiang, "Indirect Visual Simultaneous Localization and Mapping System Based on Linear Models," early publication, IEEE Sensors Journal, Nov., 2019
2. Pin-Jui Hwang, Chen-Chien Hsu*, and Wei-Yen Wang, "Development of a Mimic Robot: Learning from Demonstration Incorporating Object Detection and Multi-Action Recognition," accepted for publication, IEEE Consumer Electronics Magazine, Oct., 2019.
3. Cheng-Hung Lin, Wei-Yen Wang, Shen-Ho Liu, and Chen-Chien Hsu*, Chiang-Heng Chien, "Heterogeneous Implementation of a Novel Indirect Visual Odometry System," IEEE Access, Vol. 7, pp. 34631-34644, Mar., 2019.

Department of Electrical Engineering

Robot Athletes and Magicians

We develop robot' s that are able to compete in sports events with humans. This requires that a robot can work in an unstructured environment with the same speed and accuracy as humans. This requires that a robot has similar capabilities in computer vision, motion control, and high level reasoning as humans.
At the moment, we are working on a robot archer that can compete at the International level.

Occupancy Grid

Publications

1.Morris, K.J., Samonin, V., Baltes, J. et al. A robust interactive entertainment robot for robot magic performances. Applied Intelligence 49(11), 3834-3844 (2019) doi:10.1007/s10489-019-01565-7
2.Hosseinmemar, A., Baltes, J., Anderson, J. et al. "Closed-loop push recovery for inexpensive humanoid robots", Applied Intelligence (2019) 49(11): 3801-3814. https://doi.org/10.1007/s10489-019-01446-z
3.Shams Esfanabadi, V., Rostami, M., Rahmati, S., Baltes, J., \& Sadeghnejad, S.(2019). The average speed of motion and optimal power consumption in biped robots. The Knowledge Engineering Review, 34, E25.https://doi.org/10.1017/S0269888919000201

Department of Electro-Optical Engineering

Study of live cell imaging and analysis with Artificial intelligence

Our research mainly focus on the following research topics: (1) Digital holographic imaging in microscopy and tomography, including nano/micro-optics element measurement and inspection, biomedical cell imaging etc. (2) 3-D image and digital hologram process based on artificial intelligence (AI) with machine/deep learning; (3) 3-D imaging and display methods, including 3-D information acquisition, camera, display and related techniques and applications.

Techniques used in study

Digital Holographic Microscopy
Holographic Tomography
Holographic Optical Tweezers
Artificial Intelligence
Single/Multi cell imaging and Analysis

Chau-Jern Cheng, Professor

Director, Lab of Information Optics and Photonics
Department of Electro-Optical Engineering cjcheng@ntnu.edu.tw
https://ioplab.ieo.ntnu.edu.tw/en/index.php

Background:

PhD in Optical neural network From National Chiao-Tung University

Funding: Ministry of Science and Technology

Some of our research achievements

Selected publications

- Adaptive wavefront correction structured illumination holographic tomography. Sci. Rep. 9, 10489-10496(2019)
- Digital hologram for data augmentation in learning-based pattern classification. Opt. Lett. 43(21), 5419-5422(2018).
- Integrated dual-tomography for refractive index analysis of freefloating single living cell with isotropic superresolution. Sci. Rep. 8, 5943-5951(2018)

Department of Electro-Optical Engineering

Study of label-free diagnostics for monitoring of blood cells by THz and ultrafast spectroscopy

The key value of our expertise is to establish new comprehensive quantitative imaging approach for investigation of dynamic behaviors of the blood components. Terahertz (THz) technique is an emerging field and proved its versatile imaging capability without labelling the sample used. The THz image system uses digital holographic and microscopic principles and becomes an important tool to monitor the various modalities such as phase profile, polarization effect, fluorescence, spectral estimations, threedimensional (3D) imaging etc.

Techniques used in study

Ultrafast and Terahertz Photonics
Graphene Optoelectronics
Nonlinear Optics
Information Photonics
Liquid Crystal Physics

Chan-Shan Yang, Assistant Professor

Director, Ultrafast and Nanoscale Infrared-to-
Terahertz Science (UNITS) Lab
https://sites.google.com/view/units-lab/home Institute of Electro-Optical Engineering csyang@ntnu.edu.tw

Background:

PhD in Physics, National Tsing-Hua University PostDoc. Scientist, UC Berkeley

Funding: Ministry of Science and Technology

Some of our research achievements

Selected publications

- Quantum-critical conductivity of the Dirac fluid in graphene, Science 364, issue 6436, 158-162 (2019).
- Identification of spin, valley and moiré quasi-angular momentum of interlayer excitons, Nature Physics 15, 11401144 (2019).
- Biexcitonic optical Stark effects in monolayer molybdenum diselenide, Nature Physics 14, 1092-1096(2018).

Department of Chemistry

Asymmetric catalysis and beyond

My research interest mainly focus on the design and synthesis of organocatalyst and study their catalytic application. We have carried out various reactions, such as: Michael reaction, aldol, Maniich reaction, a-amination and etc. We are interested in developing cascade reaction that to construct multifunctional group in the products with high chemical yield and stereoselectivities.

Techniques used in study

Reaction setup and monitor; TLC analysis; HPLC analysis; Flash column chromatography; Separation and purification; NMR spectroscopy; HRMS; Single crystal X-ray analysis.

Kwunmin Chen, Professor
Department of Chemistry, Dean, College of Science kchen@ntnu.edu.tw

Backbround:

PhD in Chemistry, University of Pennsylvania, Philadelphia, PA, USA

Funding:

Ministry of Science and Technology National Taiwan Normal University

Formation of Dihydroxazine N -Oxides and subsequently Hydrolysis:

Progress Studies of the Hydrolysis Reaction by 1H NMR:

Publications

- Wan-Yun Huang, Ramani Gurubrahamam, and Kwunmin Chen* "An Unprecedented Organocascade Synthesis of Functionalized Bicyclic Nitrones from 2-Aminomalonate Derived Nucleophiles and 1-Nitro-1,3-Enynes via Allenes Formation and Subsequent Rearrangement" Adv. Synth \& Catal. 2019, 361, 170-175.
- Ramani Gurubrahamam, Koppanathi Nagaraju and Kwunmin Chen* "Organocatalytic synthesis of densely functionalized oxa-bridged 2,6epoxybenzo[b][1,5]oxazocine heterocycles " Chem. Commun. 2018, 54, 6048-6051.

Department of Physics

Optical Studies of two-dimensional materials

The overall accomplishment of my research is to utilize optical spectroscopic technique to study the electronic and vibrational excitations of two-dimensional materials such as graphene and layered transition metal dichalcogenides.

Techniques used in study

My primary techniques are THz, infrared, Raman, optical, and ellipsometric spectroscopies.

Hsiang-Lin Liu, Professor

Department of Physics
hliu@ntnu.edu.tw

Background:

PhD in Physics, University of Florida, USA

Funding:
Ministry of Science and Technology

Monolayer graphene

Publications

- H. W. Chen, Y.-W. Chen, J.-L. Kuo, Y. C. Lai, F. C. Chou, C. H. Du, and H. L. Liu*, "Spin-charge-lattice coupling in $\mathrm{YBaCuFeO}_{5}$: Optical properties and first-principles calculations", Scientific Reports 2019, 9, 3223.
- H. L. Liu*, T. Yang*, Y. Tatsumi, Y. Zhang, B. Dong, H. Guo, Z. Zhang, Y. Kumamoto, M.-Y. Li, L.-J. Li, R. Saito, and S. Kawata, "Deep-ultraviolet Raman scattering spectroscopy of monolayer $\mathrm{WS}_{2}{ }^{\prime \prime}$, Scientific Reports 2018, 8, 11398.

Department of Physics

Structured light and light-matter interaction

My researches include the structured light possessing spin and orbital angular momentum and its interaction of layered materials. We are studying various structured light and its applications, the optical properties (Raman scattering and photoluminescence) of layered materials, and physical phenomenon of the exciton excited by structured light.

Techniques used in study

Generation of structured light from laser cavities, vortex phase plates and a spatial light modulator
Raman spectroscopy and photoluminescence measurement Spatial polarization detection and analyses

Generation
Hermite-Gaussian beam Laguerre-Gaussian beam Ince-Gaussian beam Superposed modes Kaleidoscope beam Airy beam Bessel beam

Publications

- Teng-De Huang, Kristan Bryan Simbulan, Yu-Fan Chiang, Yann-Wen Lan, and Ting-Hua Lu, "Symmetry breaking of in-plane Raman scattering by elliptically polarized light in $\mathrm{MoS}_{2}{ }^{\prime \prime}$, Phys. Rev. B 100, 195414 (2019)
- T. D. Huang and T. H. Lu, "Controlling an optical vortex array from a vortex phase plate, mode converter, and spatial light modulator", Opt. Lett. 44, 3917 (2019)
- T. H. Lu, T. D. Huang and G. Y. Chiou, "Kaleidoscope vortex lasers generated from astigmatic cavities with longitudinal-transverse coupling", Opt. Express 26, 31464 (2018)

Department of Physics

Low-dimensional magnetism and spintronic devices

Our research focuses on various low-dimensional magnetic materials, such as magnetic thin films and nanoparticle assemblies. We also combined the magnetic materials with different functional 2D-materials to form spintronic devices for applications.

Techniques used in study

My primary techniques are UHV-MBE, CVD-growth of 2D materials, Scanning tunneling microscope, Atomic force microscope, Magneto-optical Kerr microscope and etc.

(

Publications

- Visualizing hydrogen diffusion in magnetic film through magnetooptical Kerr effect P.-C. Chang, Y.-Y. Chang, W.-H.Wang, F.-Y. Lo, W.-C. Lin, Communications Chemistry 2:89 (2019).
- Height reversal after Au deposition on MoS 2 flakes $/ \mathrm{SiO}_{2}$: thermal control of interfacial nucleation, Y.-H. Shen, C.-C. Hsu, P.-C. Chang, W.-C. Lin, Appl. Phys. Lett.114, 181601 (2019).
- Hydrogen-mediated magnetic domain formation and domain wall motion in $\mathrm{Co}_{30} \mathrm{Pd}_{70}$ alloy films, P.-C. Chang, C.-M. Liu, C.-C. Hsu, and W.-C. Lin, Scientific Reports 8:6656 (2018)

Department of Physics

Neutron Stars from Holographic QCD

I am a theoretical physicist and have been worked on various topics on string theory, black hole physics, holographic principle and quantum information sciences. In recent years and near future I mainly work on the gravitational wave astronomy by analyzing the gravitational wave observational data from LIGO/Virgo/KAGRA collaborations, and study their theoretical implications to black hole physics, dark matter, cosmology and astrophysics. We also develop the machine learning tools for the next generations of gravitational wave data analysis such as LISA and Einstein telescope.
Our webpage: https://taipeigravitationalwavegroup.weebly.com

Techniques used in study

Quantum Field Theory; General Relativity
Machine Learning for gravitational wave data analysis

Feng-Li Lin, Professor

Department of Physics
Taipei Gravitational Wave Group
Email: linfl@ntnu.edu.tw

Background:

PhD in Physics, University of Utah
Salt Lake City, UT
Funding:
Ministry of Science and Technology National Center for Theoretical Sciences

We derive the following equation of state for nuclear matter from holographic quantum chromodynamics (QCD) and use it to yield neutron star configurations as shown by mass-radius relation and tidal Lover number.

$$
\epsilon / \epsilon_{\odot}=2.629 \mathcal{A}^{-0.192}\left(p / p_{\odot}\right)^{1.192}+0.131 \mathcal{A}^{0.544}\left(p / p_{\odot}\right)^{0.456}
$$

Publications

- Compact Star of Holographic Nuclear Matter and GW170817, K. Zhang, T. Hirayama, L.-W. Luo and F.-L. Lin*. Physic Letter B 801, 135176 (2020).
- Distinguishing Black Hole Microstates using Holevo Information, W.-Z. Guo, F.-L. Lin* and Jiaju Zhang*. Physical Review Letters 121, 251603 (2018).
- Satellite testing of a gravitationally induced quantum decoherence model, P. Xu, Y. Ma, J.-G. Ren, H.-L. Yong, T. C. Ralph, S.-K. Liao, J. Yin, W.-Y. Liu, W.-Q. Cai, X. Han, H.-N. Wu, W.-Y. Wang, F.-Z. Li, M. Yang, F.-L. Lin, L. Li, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, Y. Chen, J. Fan*, C.-Z. Peng* and J.-W. Pan*. Science 366, 132 (2019).

Department of Physics

My research interests center around the theoretical particle physics, especially the phenomenological aspects of new physics beyond the Standard Model. My past and current works focus mainly on LHC phenomenology, dark matter and neutrino physics.

Techniques used in study
Particle Physics, Quantum Field Theory, Group Theory, Numerical Package (e.g. Madgraph, CalcHEP, MadDM, MicrOMEGAs)

Discovery potential of new

 scalar in gauged 2HDM at the LHC

Parameter space fits the current dark matter relic density

Chuan-Ren Chen, Associate Professor

Department of Physics crchen@ntnu.edu.tw

Background:
Ph. D. in Physics, Michigan State University, USA

Funding:
Ministry of Science and Technology

Publications

- C.-R. Chen, C.-W. Chiang, K.-Y. Lin, " A Variant TwoHiggs Doublet Model With A New Abelian Gauge Symmetry", Phys. Lett. B795 (2019), 22-28.
- C.-R. Chen, Y.-X. Lin, V.Q. Tran, T.-C. Yuan," Pair Production of Higgs Bosons at The LHC in Gauged 2HDM", Phys. Rev. D99 (2019) no.7, 075027
- C.-R. Chen, J. Hajer, T. Liu, I. Low, H. Zhang "Testing Naturalness", JHEP 1709, 129 (2017)

Department of Physics

Superconductivity and High Performance Computing

My research interest mainly focus on the superconductivity. My group can implement computer programs and use high performance computer to do the numerical calculation, such as exact diagonalization, parallel computing, and so on. We have studied the iron-based superconductors and are carrying out the copper-based superconductors now..

Techniques used in study

Computer language:
Fortran/Python/C++
Mainframe machine:
Linux/shell script

Space configuration in nematic state

Phase diagram

Publications

- Hong-Yi Chen, Nematicity in Electron-doped iron-pnictide superconductors, "Superconductivity and Superfluidity," [Book] ISBN 978-1-78984-065-0 (2019).
- Chung-Pin Chou, Hong-Yi Chen*, C.S. Ting, The nematicity induced d -symmetry charge density wave in electron-doped iron-pnictide superconductors, Physica C 546, 61 (2018).

Department of Physics

2D materials transistor and optoelectronics

Our researches mainly focus on the the science and technology of nanomaterials, including fundamental physics and practical applications based on 0-D nanoparticles, 1D nanowire/nanotube and 2D layered materials, specially in graphene and layered transition metal dichalcogenides. Total 18 SCI papers were published in last 5 years (2015-2019).

Techniques used in study
Chemical vapor deposition
e-beam lithography
LED lithography
Micro-Raman and PL system
Electrical measurement system
Optical-electric-magnetic measurement system
Low temperature optical and electrical measurement system
Yann-Wen Lan, Associate Professor
ASQNLab/Department of physics ywlan@ntnu.edu.tw

Background:

PhD in electrical engineering, National Taiwan University

Funding:

Research achievements in the aspect of diverse 2D electronics

Selected Publications

- Yann-Wen Lan*, Po-Chun Chen, Yun-Yan Lin, Ming-Yang Li, Lain-Jong Li, Yu-Lin Tu, Fu-Liang Yang, Min-Cheng Chen and Kai-Shin Li*. Scalable fabrication of a complementary logic inverter based on MoS_{2} fin-shaped field effect transistors. DOI: 10.1039/C8NH00419F, Nanoscale Horizons 2019. IF : 9.391)
- Che-Yu Lin, Xiaodan Zhu, Shin-Hung Tsai, Shiao-Po Tsai, Sidong Lei, Yumeng Shi, Lain-Jong Li, Shyh-Jer Huang, Wen-Fa Wu, Wen-Kuan Yeh, Yan-Kuin Su, Kang L. Wang and Yann-Wen Lan* "Atomic-Monolayer Two-Dimensional Lateral Quasi-Heterojunction Bipolar Transistors with Resonant Tunneling Phenomenon" ACS Nano, 11 (11), pp 11015-11023, 2017, IF : 13.942)

Department of Physics

Monte Carlo and Neural Networks Studies of Critical Phenomena

Our group focus on studying quantum and classical phase transitions and the associated critical phenomena using first principles Monte Carlo Simulations as well as Neural Networks

Techniques used in study:

Monte Carlo and quantum Monte Carlo simulations, Neural Networks

Publications:

1. D.-R. Tan and F.-J. Jiang*, Physical Review B, 98, 245111 (2018).
2. D.-R. Tan, C.-D. Li, and F.-J. Jiang*, Physical Review B, 97, 094405 (2018).

Department of Physics

Study the electronic structure and mechanism of unconventional superconductivity

Superconductivity studies are always strongly related to energy saving green technologies. Especially unconventional supercon-ductors, i.e. iron-chalcogenides, have resulted to many interested new understandings of electronic properties of matters. Our lab focus on measurements by tunnel diode oscillator on iron-based superconducting single crystals.

Techniques used in study

Chemical vapor/liquid transport crystal growth
Low temperature transport measurement
Magnetic measurement
RF electronics

By synthesizing high quality $\mathrm{Ba}_{\mathrm{x}}\left(\mathrm{NH}_{3}\right) \mathrm{Fe}_{2} \mathrm{Se}_{2}$ superconductor we determined its superconducting phase diagram and its two-gap behavior of supercurrent density.

Publications

- Y.Y. Hsu, Y.B. Li, S.T. Jian, G.K. Li, M.C. Yang, "Two-gap superconducting properties of alkaline-earth intercalated $\mathrm{A}_{\mathrm{x}}\left(\mathrm{NH}_{3}\right) \mathrm{Fe}_{2} \mathrm{Se}_{2} \quad(\mathrm{~A}=\mathrm{Ba}, \mathrm{Sr})^{\prime \prime}$, Supercond. Sci. Technol. 29, 035005 (2016).
- T.I. Hung, L.A. Chen, C.H. Huang, C.Y. Lin, C.W. Chen, Y.B. You, S.T. Jian, M.C. Yang, Y.Y. Hsu, J.C. Ho, Y.Y. Chen, H.C. Ku, "Low temperature heat capacity of layered superconductors SrNi2Ge2 and SrPd2Ge2", J. Low Temp. Phys. 171, 148 (2013).

Department of Earth Sciences

Understanding magmatic processes: Geochemical and geochronological studies

We study the island arc magmatism and volcanism processes in the Northern Luzon Arc (Taiwan and Philippine) and the Western Sunda-Banda Arc (Sumatra and Java Island, Indonesia). Our researches are focusing on igneous geochemistry, zircon uranium-lead geochronology, volcanology and experimental petrology of the Cenozoic volcanic island rocks. We welcome students who want to visit our lab for learning geochemical analyses and using geochemical data.

Techniques used in study

Operations on X-ray Fluorescence (XRF), Scanning Electron Microscope (SEM), Energy Dispersive Spectrometer (EDS), Electron Probe Micro-Analyses (EPMA), Laser Ablation Microprobe (LAM)-ICPMS

Yu-Ming Lai, Assistant Professor Department of Earth Sciences Lab of Magmatic and Volcanic Processes ymlai@ntnu.edu.tw

Background:

PhD in Department of Geosciences, National Taiwan University, Taiwan

Funding: Ministry of Science and Technology

\downarrow Field survey and sample collection

Publications

- Zircon U-Pb and Hf isotopic constraints on the magmatic evolution of the Northern Luzon Arc. Terrestrial Atmospheric and Oceanic Science, 2018, 29 (2), 153-190.
- Age, geochemical and isotopic variations in volcanic rocks from the Coastal Range of Taiwan: Implications for magma generation in the Northern Luzon Arc. Lithos, 2017, 272-273, 92-115.

Department of Earth Sciences

Observational Seismology

Research interest

My research is primarily focused on earthquake seismology, mainly the physics of seismological phenomena associated with different styles and mechanisms of slip in natural fault systems. The general goal is to better understand where, when, and how fault creeps. We have detected repeating earthquake, tectonic tremor, earthquake swarms in Taiwan and build catalogs as complete as possible, to understand their spatiotemporal characteristics and physics behind.

Techniques used in study

Signal Processing

Repeating earthquakes

> Creeping fault in eastern Taiwan

Publications

- Chen, K. H., Tai, H.J., S. Ide, T. Bryne, C. W. Johnson (2018), Tidal modulation and tectonic implication of non-volcanic tremors in Taiwan, J. Geophys. Res., 123, 5945-5964, doi:10.1029/2018JB015663.
- Chen, K. H. and Burgmann, R. (2017), Creeping faults: Good news, bad news?, Review of Geophysics (Commentary), 55, 10.1002/2017RG000565.

Science Education Center

Interdisciplinary Research in Science Education

My major research interests include science education, e-Learning, interdisciplinary science learning and science communication, and I have authored and coauthored more than 120 articles.

Techniques used in study

My primary techniques are CloudClassRoom (ccr.tw), Board Games, NGS (next generation sequencing), and Extended Reality.

Interdisciplinary Science Learning

2013, Dr. Chang's catechol-Omethyltransferase (COMT) study was privileged with a report by the New York Times Sunday Magazine, as well as in the news featured on Association of Psychological Science website

In 2019, CouldClassRoom (CCR) mobile system, which was developed by him and his research team, has been selected as an exemplar institution in the 2019 EDUCAUSE Horizon Report.

Chun-Yen Chang, Director

Science Education Center
changcy@ntnu.edu.tw

Background:

PhD in Science Education, The
University of Texas at Austin, USA

Publications

- Chang, Y. H., Chang, C. Y.* \& Tseng, Y. H. (2010). Trends of science education research: An automatic content analysis. Journal of Science Education and Technology, 19(4), 315-331. (SSCI, SCI-expanded)
- Yeh, T. K., Chang, C. Y. *, Hu, C. Y., Yeh, T. G. \& Lin, M. Y. (2009). Association of catechol-O-methyltransferase (COMT) polymorphism and academic achievement in a Chinese cohort. Brain and Cognition, 71, 300-305. (SSCI, SCI)
- Wang, H. C.*, Chang, C. Y.* \& Li, T. Y. (2008). Assessing creative problem-solving with automated text grading. Computers \& Education, 51(4), 1450-1466.(SCI, SSCI).
- Chien, Y. T., Chang, Y. H., \& Chang, C. Y.* (2016). Do we click in the right way? A metaanalytic review of clicker-integrated instruction. Educational Research Review, 17, 1-18. (SSCI) Rundgren, C. J., Chang Rundgren, S. N., Tseng, Y. H., Lin Pei-Ling, \& Chang, C. Y.* (2012).
- Are you SLiM? - Developing an instrument for civic scientific literacy measurement (SLiM) based on media coverage. Public Understanding of Science, 21(6), 759-773. (SSCI).

